The CORAS method for security risk analysis

ESSCaSS 2008
NODES Tutorial

28/8-08

Heidi E. I. Dahl
SINTEF
Norwegian research group with 2000 employees from 55 different countries

More than 90 percent of our earnings come from contracts for industry and the public sector, and from project grants from the Research Council of Norway

Research divisions
- Health Research
- Technology and Society
- ICT
- Materials and Chemistry
- Building and Infrastructure
- Marine
- Petroleum and Energy

SINTEF Foundation
Limited companies
SINTEF ICT
> Cooperative and Trusted Systems
> Quality and Security Technology

- Model based security analysis
- Model driven security architecture
- Trust management
- Tools for analysis and documentation
- Empirical research on methods and tools to build secure systems

- Security risk analysis – CORAS
 - Method
 - Language (textual syntax, semantics, calculus)
 - Usability and Security
Outline

- Security risk analysis
- An example driven introduction to the CORAS method
- CORAS resources
The example

- A PhD student is worried about losing the work she has done on her thesis
- The Big Corporation funding her work is worried that sensitive business information will reach its competitors
- They decide to do a security risk analysis to determine whether the risk level is acceptable
Why do we analyse security risks?

- Asset, something of value
- Vulnerability
- Threat
- Reduced risk level

Constitutes a security risk

We need to introduce security mechanisms
75% of all sensitive data losses are caused by human error.

Taking Action to Protect Sensitive Data, IT Policy Compliance Group, 2007
The CORAS method

Model based method for security risk analysis that provides

- a customized graphical language for threat and risk modelling
- a diagram editor
- detailed guidelines explaining how the language should be used to capture and model relevant information during the various stages of the security analysis

CORAS

- has been developed through both empirical investigations and a series of industrial field studies (projects financed by the Norwegian Research Council and the EU)
- is based on international standards for risk management (e.g. AS/NZS 4360:2004)
The standard analysis process

from the Australian Risk Management Standard
AS/NZS 4360:2004
Elements of the analysis

Analysis context

- Vulnerability
- Threat
- Unwanted incident
- Asset
- Likelihood
- Consequence
- Treatment
- Risk
The CORAS method

1. Introduction
2. High level analysis
3. Approval
4. Risk identification
5. Risk estimation
6. Risk evaluation
7. Risk treatment
Introductory meeting

- Introduce the analysis method
- Gather information from the client about the target of analysis and the desired focus and scope.

- Decision makers
- Technical expertise (optional)
Introductory meeting – Agenda

→ A short introduction to CORAS
→ The client presents the target of analysis
→ A discussion of the focus and scope of the analysis
Client’s presentation of target

- Ann Onymous
- PhD student in Computer Science
- Uses data from Big Corporation (BC)
- Works in her office at the university and at home

At the university
- Shares an office with another PhD student
- Works on laptop in docking station
- Wired internet

At home
- Lives with her boyfriend
- Brings her laptop home with her or uses shared computer
- Wireless internet
Focus and scope

The focus of the analysis is data security, in terms of business sensitive data from BC and the PhD thesis itself.

The scope is data security at home and at work. We do not consider risks involved in transporting the data.
Output from the introductory meeting

- Informal description of the target
- Necessary system documentation
 - Contract between Ann and BC
 - IT security guidelines at the university
 - Security measures in place at home and at the university
 - A sketch of Ann’s work habits
- A short statement of the focus and scope of the analysis
High-level analysis

→ Ensure that the analysts and the client have a common understanding of the target of analysis
→ Determine the assets that will focus the analysis
→ Get an overview of the client’s initial concerns

→ Decision makers
→ Technical expertise
High-level analysis – Agenda

→ The analysts presents a description of the target of analysis
→ The client corrects errors and misunderstandings
→ Asset identification
→ High-level analysis
System description

Home computer

- Check email
- Internet browsing
- Trying new software
- File sharing
- Writing PhD thesis

Ann

Boyfriend
Asset identification

- We use an asset diagram to model the parties involved in the analysis, which assets they want to protect, and whether harm to one asset may cause harm to any of the others.
Asset diagram

- Ann’s reputation
- BC’s reputation
- Business sensitive information
- PhD thesis
- Compliance with contract between Ann and BC

2
High level analysis
High-level analysis

<table>
<thead>
<tr>
<th>Who/what is the cause?</th>
<th>How? What may happen? What does it harm?</th>
<th>What makes this possible?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>Deletes the thesis by mistake</td>
<td>No backup</td>
</tr>
<tr>
<td>Laptop</td>
<td>Crashes and the last hours’ work is lost</td>
<td>Old laptop</td>
</tr>
<tr>
<td>Hacker</td>
<td>Gains access to business sensitive information and sells it to competitor</td>
<td>Lack of security at home</td>
</tr>
</tbody>
</table>
Output from the high-level analysis meeting

- Asset diagram
- Preliminary list of unwanted incidents
Approval

→ Arrive at an approved target description
→ Decide which risk levels are acceptable for each asset
→ Decision makers (important)
→ Technical expertise
Approval – Agenda

- The target description and assets are approved by the client
- Consequence scales
- Likelihood scale
- Risk evaluation criteria
Likelihood scale

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rarely</td>
</tr>
<tr>
<td>2</td>
<td>sometimes</td>
</tr>
<tr>
<td>3</td>
<td>regularly</td>
</tr>
<tr>
<td>4</td>
<td>often</td>
</tr>
</tbody>
</table>
Consequence scale

(PhD thesis and Business sensitive information)

<table>
<thead>
<tr>
<th>Consequence</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>harmless</td>
</tr>
<tr>
<td>2</td>
<td>moderate</td>
</tr>
<tr>
<td>3</td>
<td>serious</td>
</tr>
<tr>
<td>4</td>
<td>catastrophic</td>
</tr>
</tbody>
</table>
Risk matrix

Risk matrix
(PhD thesis and Business sensitive information)

<table>
<thead>
<tr>
<th>c \ l</th>
<th>rarely</th>
<th>sometimes</th>
<th>regularly</th>
<th>often</th>
</tr>
</thead>
<tbody>
<tr>
<td>harmless</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>serious</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>catastrophic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Output from the approval meeting

- Approved target description
- Likelihood and consequence scales
- Risk matrices
Risk identification

→ Create an overview of the risk picture, i.e. how threats may exploit vulnerabilities to cause unwanted incidents that cause damage to the assets.

→ Technical expertise
→ Users
Risk identification – Agenda

→ Model risks in threat diagrams
Modelling risks in threat diagrams

We use threat diagrams to model threats, what we fear they may do to our assets, how it happens and which vulnerabilities makes this possible.
What are the threats?

Hacker

Ann

Home computer

Business sensitive information

PhD thesis
What do we fear will happen?

- Competitor uses business sensitive information strategically
- Business sensitive information is published in national newspaper
- All work on thesis is lost
- A day's worth of work on the thesis is lost
- PhD thesis
- Business sensitive information
- Home computer
- Hacker
- Ann

Risk identification
How does it happen?

- Boyfriend runs file sharing application on home computer
- Boyfriend shares folder with business sensitive information
- Competitor uses business sensitive information strategically
- Business sensitive information is published in national newspaper
- All work on thesis is lost
- Boyfriend shares folder with business sensitive information
- Hacker gains access to Ann’s laptop
- Hacker copies all data from laptop
- Business sensitive information is published in national newspaper
- Hacker deletes all files in "My documents"
- Spyware crashes computer
- Spyware contains spyware on her laptop
- Ann installs software that contains spyware on her laptop
- Computer components fails
- A day’s worth of work on the thesis is lost
- A day’s worth of work on the thesis is lost
- PhD thesis
- Business sensitive information
- Business sensitive information
- Boyfriend runs file sharing application on home computer
- Boyfriend shares folder with business sensitive information
- Competitor uses business sensitive information strategically
- Business sensitive information is published in national newspaper
- All work on thesis is lost
- Boyfriend shares folder with business sensitive information
- Hacker gains access to Ann’s laptop
- Hacker copies all data from laptop
- Business sensitive information is published in national newspaper
- Hacker deletes all files in "My documents"
- Spyware contains spyware on her laptop
- Ann installs software that contains spyware on her laptop
- Computer components fails
- A day’s worth of work on the thesis is lost
- A day’s worth of work on the thesis is lost
- PhD thesis
- Business sensitive information
- Business sensitive information
Which vulnerabilities makes this possible?

- Boyfriend runs file sharing application on home computer
- Boyfriend shares folder with business sensitive information
- Complicated file sharing preferences
- Hacker gains access to Ann's laptop
- Hacker copies all data from laptop
- Hacker deletes all files in "My documents"
- Business sensitive information is published in national newspaper
- Competitor uses business sensitive information strategically
- Business sensitive information
- All work on thesis is lost
- PhD thesis
- A day's worth of work on the thesis is lost
- Computer components fails
- No backup of thesis files
- Spyware crashes computer
- Unaware of spyware
- Ann installs software that contains spyware on her laptop
- No firewall
- Hacker
- Hacker
- Ann's boyfriend
- Home computer
- Old components
Risk estimation

→ Estimate the current risk level

→ Decision makers
→ Technical expertise
→ Users
Risk estimation – Agenda

→ Assign likelihoods to each unwanted incident
→ Assign consequences to each impact relation
Assigning likelihoods and consequences

Competitor uses business sensitive information strategically [rarely]

Business sensitive information is published in national newspaper [rarely]

4

Business sensitive information

3

Risk estimation

ICT

Home computer

Ann's boyfriend

Boyfriend runs file sharing application on home computer

Complicated file sharing preferences

Boyfriend shares folder with business sensitive information

Hacker gains access to Ann's laptop

Hacker copies all data from laptop

Hacker deletes all files in "My documents"

Spyware crashes computer

Computer components fail

No backup of thesis files

A day's worth of work on the thesis is lost

All work on thesis is lost

Business sensitive information

Competitor uses business sensitive information strategically

Business sensitive information is published in national newspaper

PhD thesis

Ann installs software that contains spyware on her laptop

Unaware of spyware

Ann

Hacker

Home computer

Old components

No firewall

Boyfriend

Spyware

Ann's boyfriend

Complicated file sharing preferences

Hacker

Business sensitive information

Business sensitive information

PhD thesis
Assigning likelihoods and consequences

Hacker deletes all files in "My documents" [rarely]

Spyware crashes computer [sometimes]

Computer components fails [rarely]

PhD thesis

No backup of thesis files

All work on thesis is lost [sometimes]

A day’s worth of work on the thesis is lost [sometimes]
Completed threat diagram

- Boyfriend runs file sharing application on home computer
 - Ann’s boyfriend

- Boyfriend shares folder with business sensitive information
 - Complicated file sharing preferences

- Hacker gains access to Ann’s laptop
 - No firewall
 - Hacker

- Hacker copies all data from laptop
 - Business sensitive information is published in national newspaper [rarely]

- Hacker deletes all files in "My documents" [rarely]

- Spyware crashes computer [sometimes]

- Computer components fails [rarely]

- No backup of thesis files

- All work on thesis is lost [sometimes]

- A day’s worth of work on the thesis is lost [sometimes]

- Business sensitive information

- PhD thesis

- Competitor uses business sensitive information strategically [rarely]

ICT

SINTEF
Risk evaluation

➔ Evaluating which risks are acceptable and which are not.
➔ Give an overview of the risks.
➔ Decision makers
Risk evaluation – Agenda

- Enter the risks in the risk matrix
- Summarize the risk picture in risk diagrams
Are the risks acceptable?

Risk matrix (PhD thesis and Business sensitive information)

<table>
<thead>
<tr>
<th></th>
<th>c \ l</th>
<th>rarely</th>
<th>sometimes</th>
<th>regularly</th>
<th>often</th>
</tr>
</thead>
<tbody>
<tr>
<td>harmless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>moderate</td>
<td></td>
<td></td>
<td>A day's worth of work on the thesis is lost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>serious</td>
<td></td>
<td>BS info is published in national newspaper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>catastrophic</td>
<td></td>
<td>Competitor uses BS info strategically</td>
<td>All work on thesis is lost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summarizing the risk picture

- We use risk diagrams to show how threats pose risks to the assets.
Risk diagrams

R1: Competitor uses business sensitive information strategically

R2: Business sensitive information is published in national newspaper

R3: All work on thesis is lost

R4: A day’s worth of work on the thesis is lost

Risk estimation

Business sensitive information

PhD thesis
Risk treatment

→ Getting an overview of potential treatments of the unacceptable risks.

→ Decision makers
→ Technical expertise
→ Users
Risk treatment – Agenda

➔ Add treatments to the threat diagrams
➔ Add treatments to risk diagrams
Adding treatments to the threat diagrams

Threat (deliberate) Threat (accidental) Threat (non-human) Vulnerability Asset

Threat scenario [likelihood] Unwanted incident [likelihood] Risk Treatment scenario
What can we do to reduce the risks to an acceptable level?

- Boyfriend runs file sharing application on home computer
- Complicated file sharing preferences
- Hacker gains access to Ann’s laptop
- Hacker deletes all files in "My documents" [rarely]
- Spyware crashes computer [sometimes]
- Computer components fail [rarely]
- Spyware awareness course
- Hacker copies all data from laptop
- Business sensitive information is published in national newspaper [rarely]
- All work on thesis is lost [sometimes]
- PhD thesis
- Do regular backups of thesis files
- Restrict sharing on home computer
- Business sensitive information
- Install firewall
- Ann installs software that contains spyware on her laptop
- Ann's boyfriend
- Unaware of spyware
- No firewall
- No backup of thesis files
R1: Competitor uses business sensitive information strategically

R3: All work on thesis is lost

- Spyware awareness course
- Do regular backups of thesis files
- Restrict sharing on home computer
- Business sensitive information
- PhD thesis
- Install firewall
- Restrict sharing on home computer
- Business sensitive information
- Install firewall

Risk treatment

Treatment overview diagram
Executive summary

The focus of the security risk analysis is data security, in terms of business sensitive data from BC and the PhD thesis itself.

The scope is data security at home and at work. We do not consider risks involved in transporting the data.

The unacceptable risks that were uncovered were:
- R1: Competitor uses business sensitive information strategically
- R3: All work on thesis is lost

In order to reduce the risks to an acceptable level, the following treatments were suggested:
- Restrict sharing on home computer
- Install firewall
- Spyware awareness course
- Do regular backups of thesis files
Resources: http://coras.sourceforge.net/

- Downloads
 - The CORAS diagram editor
 - The CORAS icons (Visio stencil, PNG, SVG)

- Publications:
Questions?

Heidi E. I. Dahl
heidi.dahl@sintef.no