
Structured Semantics for the CORAS Security

Risk Modelling Language

Heidi E. I. Dahl1,4, Ida Hogganvik2,3 and Ketil Stølen1,3

1 SINTEF ICT, Oslo, Norway
2 Scandpower Risk Management AS, Kjeller, Norway

3 Department of Informatics, UiO, Oslo, Norway
heidi.dahl@sintef.no, iho@scandpower.com, ketil.stolen@sintef.no

Abstract. The CORAS security risk modelling language is a customised
graphical language for communication, documentation and analysis of
security threat and risk scenarios. This paper presents a semantics for the
CORAS language. The semantics is structured in that it provides step-
by-step instructions on how to correctly interpret an arbitrary CORAS
diagram. The result is a readable paragraph of English. This enables
users of the CORAS language to easily extract the intended meaning of a
given diagram. The semantics is modular in the sense that the semantics
of any diagram can be deduced from the semantics of its elements and
relations.

1 Introduction

CORAS is a method for security risk analysis [5]. It comes with a specialised
language for communication, documentation and analysis of security threat and
risk scenarios. The language was originally de�ned as a UML [16] pro�le [15, 17],
and has later been customised and re�ned in several aspects, based on experi-
ences from industrial case studies, and by empirical investigations documented
in [6], [7] and [8].

The CORAS language is in particular intended to support brainstorming ses-
sions used to identify and estimate security risks. Such brainstorming sessions are
characterised by the involvement of people with thorough knowledge of speci�c,
but only partly overlapping aspects of the target of analysis. Typical partici-
pants are the intended users of the target, its designers, developers, and relevant
decision makers. These people have normally quite di�erent backgrounds and it
may be di�cult for the analysts to make them work well together as a group.
Our experiences indicate that the CORAS language improves both the e�ciency
of the analysis process and the quality of the results.

We claim that our graphical approach to security risk modelling contributes
to solving three issues related to security analysis:

� How to facilitate communication in a group consisting of people with di�erent

backgrounds and competences: Our aim has been to provide the participants

4 Main author

with a means of communication that covers both technical and more high-
level information, without being too complicated to understand. O�ering a
common basis for communication will hopefully reduce misunderstandings
and thereby give a more correct risk picture.

� How to estimate the likelihoods and consequences of identi�ed risks: In prac-
tice, reliable data on which this can be based is often not available. The
participants must use their expert knowledge, experience and familiarity
with the domain to estimate both the likelihoods and the consequences of
incidents that might not have happened yet. Our aim has been to o�er a
structured, graphical risk picture to make the complexity more manageable.
A graphical representation may illustrate who or what caused the incidents
and the weaknesses in the system that made them possible.

� How to document the security analysis in a comprehensible manner: The
�ndings of a security analysis constitute vital information not only to the
participants in the analysis, but to the organization as a whole. Our aim
has been to de�ne a documentation method that should be more or less
self-explanatory, and not rely on extensive training to be understood.

Although we have aimed at making a language that is easily understandable,
situations are bound to arise where the intended meaning of a construct or an
expression needs further explanation. The main contribution of this paper is the
de�nition of a structured semantics aiming to ful�l this need. The semantics takes
an arbitrary CORAS diagram and delivers its intended meaning as a readable
paragraph of English. It is structured in the sense that it comes with step-by-
step instructions allowing the translation to be conducted automatically. The
semantics has been developed to meet the following success criteria:

1. The translation from CORAS diagrams to English should be modular. If we
add new relations and/or elements to a diagram we have already translated,
the translation of the modi�ed diagram is the union of the translation of the
original diagram with the translation of the new relations and/or elements.

2. The resulting paragraph should be understandable English. The purpose of the
translation is to provide a description, in English, of a CORAS diagram, in
order to communicate the meaning of the diagram to those not familiar with
the intended meaning of the various elements and relations of the CORAS
language.

3. The translation should be easy to perform. Anyone, even someone unac-
quainted with CORAS diagrams, should be able to translate a CORAS
diagram into English.

4. The translation should be possible to automate. Automatic translation is a
feature that will be implemented in the CORAS tool in the future (see
http://coras.sourceforge.net for downloads and documentation).

5. It should be possible to translate inconsistent diagrams, and the transla-

tion should enable the user to identify inconsistencies. Inconsistent diagrams
should still be possible to translate, and the resulting paragraph in English
should be su�ciently clear to allow the user to identify the cause of the
inconsistency.

http://coras.sourceforge.net

The remainder of the paper is structured into four sections. Sec. 2 introduces
the CORAS language. Sec. 3 provides an overview of the structured semantics
and relevant notation. The semantics is divided into two main steps: the trans-
lation from the graphical to the textual syntax, which is described in Sec. 3.1,
and the translation from the textual syntax to English, which is described in
Sec. 3.2. Sec. 4 gives an example of the translation of a diagram. Finally, Sec. 5
presents our conclusions and related work.

2 The CORAS Language

The CORAS language originates from a UML pro�le developed as a part of
the EU funded research project CORAS (IST-2000-25031) [1] (http://coras.
sourceforge.net). As a result of our work to satisfy the modelling needs in a
security risk analysis, the language and its guidelines have evolved into a more
specialized and re�ned approach. The language is meant to support the analyst
during the security risk analysis, and serves di�erent purposes in each phase
of the analysis. A security risk analysis is normally structured into �ve phases:
(1) context establishment, (2) risk identi�cation, (3) risk estimation, (4) risk
evaluation and (5) treatment identi�cation [3].

In the context establishment we employ assets overview diagrams to specify
the parties of the security analysis and their assets. The purpose is to obtain a
precise de�nition of what the valuable aspects of the target of analysis are, and
which are the most important. From empirical investigations [6] and �eld trials
we know that asset identi�cation and valuation is very di�cult, and that mis-
takes or inaccuracies made there may jeopardize the value of the whole security
analysis.

During risk identi�cation we use threat diagrams to identify and document
how vulnerabilities may be exploited by threats to initiate unwanted incidents,
and which assets they a�ect. The threat diagrams give a clear and easily under-
standable overview of the risk picture and make it easier to see who or what the
threat is, how the threat works (threat scenarios) and which vulnerabilities and
assets they involve.

The threat diagrams are used as input for the risk estimation phase, where
unwanted incidents are assigned likelihood estimates and possible consequences.
The likelihood estimation is often a di�cult task, but illustrating the unwanted
incidents in the correct context has proved very helpful in practice.

After the risk estimation, the magnitude of each risk can be calculated on the
basis of its likelihood and consequence, and modelled in risk overview diagrams.
The risk overview diagrams specify which threats initiate the di�erent risks, and
exactly which assets they may harm. This risk representation is then compared
to prede�ned risk tolerance levels to decide which ones need treatments.

In the treatment identi�cation, the threat diagrams containing the risks that
cannot be tolerated are used as basis for treatment identi�cation. In this phase
the appropriate treatments are identi�ed and modelled in treatment diagrams.

http://coras.sourceforge.net
http://coras.sourceforge.net

The resulting treatment diagrams can be seen as a plan for how to deal with the
identi�ed risks.

Communicating the results of an analysis in such a way that they are well un-
derstood by decision makers can be challenging. The CORAS language supports
this by o�ering treatment overview diagrams. Treatment overview diagrams may
for example be used to provide a high level summary when presenting the main
�ndings from an analysis.

To summarise, the CORAS language consists of �ve di�erent kinds of dia-
grams: assets overview diagrams, threat diagrams, risk overview diagrams, treat-
ment diagrams and treatment overview diagrams. Their basic building blocks are
presented in Fig. 1.

Fig. 1. Basic building blocks of the CORAS diagrams

In the rest of the paper, we focus on assets overview diagrams and threat
diagrams. The semantics is de�ned accordingly for risk overview, treatment and
treatment overview diagrams as explained in the full report [4].

2.1 Constructing an Assets Overview Diagram

Fig. 2 presents the syntax of an assets overview diagram.

Fig. 2. Graphical syntax of assets overview diagrams

Assets overview diagrams are used early in the analysis to �x its scope. The
relevant assets are placed in the diagram, and when appropriate connected by

indirect harm relations to indicate that harm to one asset may a�ect another.
Parties may be added, and connected to assets with protect relations. A protect
relation may be annotated with a risk level, indicating the level of risk a party is
willing to accept with regards to the asset in question. The di�erent kinds of risk
levels is shown in Fig. 2: it is either a risk value which is either a numerical value
or a linguistic term such as �low�/�medium�/�high�, a likelihood and consequence

pair giving the maximal acceptable values, or a risk function of such a pair.
Hence, the parties are the customers, institutions or organisations on behalf of
whom the analysis is carried out. In practice there is often only one party.

To summarise, assets overview diagrams are constructed from two basic
building blocks, using two relations:

Basic building blocks: Asset, Party.
Relations: Protect (may be annotated with a risk level), Indirect harm.

2.2 Constructing a Threat Diagram

Fig. 3 presents the syntax of a threat diagram.

Fig. 3. Graphical syntax of threat diagrams

When constructing a threat diagram, we start by placing the assets to the
far right, and potential threats to the far left. The construction of the diagram
is an iterative process, and we may add more threats later on in the analysis.
The assets were �xed when the assets overview diagram was constructed.

Next we place unwanted incidents to the left of the assets. They represent
events which may have a negative impact on one or more of the assets. This
impact relation is represented by drawing an arrow from the unwanted incident
to the relevant asset, and may be annotated with a consequence value.

The next step consists in determining the di�erent ways a threat may initiate
an unwanted incident. We do this by placing threat scenarios, each describing
a series of events, between the threats and unwanted incidents and connecting
them all with initiate relations. An initiate relation may originate from either
threats, threat scenarios or unwanted incidents, and terminate at threat scenarios

or unwanted incidents, and displays the causal relationship between the elements.
In the case where a vulnerability is exploited when passing from one element to
another, the vulnerability is positioned on the arrow between them.

There is also the possibility of an impact relation from a threat scenario to an
asset, however this relation is mainly used in the early stages of the analysis and
may not be annotated with a consequence. This has to do with the di�erence
between unwanted incidents and threat scenarios: unwanted incidents are used
to give a description of single events that may have a consequence for an asset.
Threat scenarios are used to describe the sequences of events leading up to an
unwanted incident. In the case where a threat scenario has direct consequences
for an asset, a new unwanted incident should eventually be inserted to express
this.

At this point, likelihoods may be added to threat scenarios, unwanted inci-
dents and initiate relations. The likelihoods of the �rst two are the likelihood
that they will happen at all. The likelihood of an initiate relation is the likelihood
of the second element, given the �rst.

To summarise, threat diagrams are constructed from seven basic building
blocks, using two relations:

Basic building blocks: Deliberate, Accidental, and Non-Human Threat,
Vulnerability, Threat Scenario, Unwanted Incident, Asset.
Relations: Initiate (may be annotated with a likelihood), Impact (may
in some cases be annotated with a consequence).

3 The Structured Semantics

The structured semantics for the CORAS language is divided into two separate
steps:

(A) The translation of a diagram into its textual syntax, and
(B) The translation of its textual syntax into its meaning as a paragraph in

English.

Hence, the semantics enables the user of CORAS to extract the meaning of an
arbitrary CORAS diagram by applying �rst (A), then (B) (this is written as
(B ◦A)).

Both these steps, and therefore the structured semantics, are modular: a
diagram is translated relation by relation. Step (A) is described in Sec. 3.1, and
Step (B) in Sec. 3.2. In both sections, we make use of the naming conventions
in Table 1. For simplicity we use a (possibly decorated) p to represent a party,
and a (possibly decorated) a to represent an asset, etc.

3.1 Step (A): From the Graphical to the Textual Syntax

The textual syntax of the CORAS language is de�ned using a standardised
EBNF notation [11]. For the complete syntax, and translation rules for all the

Element Instance

party p

asset a

deliberate threat dt

accidental threat at

non-human threat nht

vulnerability v = {v}
vulnerability set V = {v1, . . . , vn}

Element Instance

threat scenario ts

unwanted incident ui

likelihood l

consequence c

risk r

risk value rv

risk function rf

treatment scenario trs

Table 1. Naming conventions

relations in the CORAS language, see the full report [4]. In this section, we
explain how a diagram is translated from the graphical to the textual syntax,
using the assets overview diagram as an example. The other kinds of diagrams
are translated accordingly.

The EBNF grammar for the assets overview diagram is the following:

relation = protect | indirect harm;

protect = party
[risk level]

· · · asset ;
indirect harm = asset −→ asset ;

party = identi�er ;
asset = identi�er ;

risk level = risk value | risk function(likelihood , consequence) |
(likelihood , consequence);

risk value = linguistic term | numerical value;
likelihood = linguistic term | numerical value;

consequence = linguistic term | numerical value;

The EBNF de�nes the structure of the diagram, as it was explained in Sec. 2.
The assets overview diagram has two relations which we want to translate: the
protect relation in Fig. 4(a) and the indirect harm relation in Fig. 4(b).

(a) (b)

Fig. 4. Relations of the assets overview diagram

The translation from the graphical to the textual syntax is essentially replac-
ing all the icons with their textual label. In the assets overview diagram, this

means that the protect relation in Fig. 4(a) is translated into p
rl· · · a, and the

indirect harm relation in Fig. 4(b) into a1 −→ a2.
The other diagrams are translated in the same manner.

3.2 Step (B): From the Textual Syntax to English

In this step of the structured semantics we apply the semantic function [[_]] to
the textual expressions resulting from Step (A), obtaining a sentence in English
for each expression. We start by de�ning the semantics for the basic building
blocks, and these de�nitions are then used to de�ne the semantics for the rela-
tions.

The translation rules of the initiate and treat relations involving unwanted
incidents are identical to those involving threat scenarios. The rules for the
former can be obtained by replacing ts with ui in the latter.

We simplify accordingly for the three di�erent kinds of threats, specifying the
rules with dt for direct threat in the semantics of the initiate and treat relations.
This can be replaced by either at or nht for accidental and non-human threats.

In the semantics of risks and of the protect relation, we present the rules
with rv for risk level. This can be replaced by either a risk function rf (l , c) or a
likelihood and consequence pair (l , c).

The translation rules of the treat relations does not depend on the treatment
category. We therefore present only the rules with av , the rules for the other
treatment categories can be obtained by replacing av with dl , dc, sh or re (see
the semantics of the treatment categories for de�nitions).

Translating the Basic Building Blocks

[[p]] := party `p'
[[a]] := asset `a'

[[dt]] := deliberate threat `dt '
[[at]] := accidental threat `at '

[[nht]] := non-human threat `nht '
[[v]] := vulnerability `v '

[[V]] := vulnerability set `v1 ', . . . , `vn '
[[ts]] := threat scenario `ts'

[[ts(l)]] := threat scenario `ts', which has [[l]],
[[ui]] := unwanted incident `ui '

[[ui(l)]] := unwanted incident `ui ', which has [[l]],
[[r]] := risk `r '

[[r(rv)]] := risk `r ', which has [[rv]],

[[r(rf (l , c))]] := risk `r ', which has [[rf (l , c)]],
[[r(l , c)]] := risk `r ', which has [[(l , c)]],

[[trs]] := treatment scenario `trs'
[[rv]] := risk value `rv '

[[rf (l , c)]] := risk function `rf ' of [[(l , c)]]
[[(l , c)]] := [[l]] and [[c]]

[[l]] := likelihood `l '
[[c]] := consequence `c'

Translating the Protect relation

[[p
rv· · · a]] := [[p]] wants to protect the value of [[a]], but accepts [[rv]] or less

Translating the Indirect harm relation

[[a1 −→ a2]] := [[a2]] may be harmed indirectly via [[a1]]

Translating the Initiate relation

[[dt Vn l1−−−→ ts(l2)]] := there is a [[l1]] that [[dt]] will exploit [[Vn]] to
initiate [[ts(l2)]]

[[ts1 (l1) Vn l3−−−→ ts2 (l2)]] := after [[ts1 (l1)]] has taken place, there is a [[l3]]
that [[Vn]] will be exploited to initiate [[ts2 (l2)]]

[[dt −→ r(rv)]] := [[dt]] may initiate [[r(rv)]]
[[ts(l) −→ r(rv)]] := [[ts(l)]] may initiate [[r(rv)]]

[[r1 (rv1) −→ r2 (rv2)]] := [[r1 (rv1)]] may initiate [[r2 (rv2)]]

Translating the Impact relation

[[ts(l) −→ a]] := [[ts(l)]] may impact [[a]]

[[ui(l) c−→ a]] := [[ui(l)]] may impact [[a]] with [[c]]
[[r(rv) −→ a]] := [[r(rv)]] may impact [[a]]

Translating the Treatment categories

[[av]] := avoids the risk

[[dl]] := reduces the likelihood

[[dc]] := reduces the consequences

[[sh]] := shares the risk

[[re]] := retains the risk

Translating the Treat relation

[[trs av−→ dt]] := [[trs]] [[av]] of [[dt]] attacking the system

[[trs av−→ v]] := [[trs]] [[av]] of [[v]] being exploited

[[trs av−→ ts(l)]] := [[trs]] [[av]] of [[ts(l)]] being initiated

[[trs av−→ r(rv)]] := [[trs]] [[av]] of [[r(rv)]]

[[trs av−→ a]] := [[trs]] [[av]] of [[a]] being harmed

4 Example Translation

To illustrate how a diagram is translated we will use the threat diagram in Fig. 5

Fig. 5. Threat diagram

The threat diagram is translated relation by relation using the two-step
strategy outlined above. The resulting sentences have been arranged for bet-
ter readability. The diagram has 8 relations: 7 initiate relations (5 annotated
with vulnerabilities and 2 with likelihoods) and 1 impact relation (annotated
with a consequence). Translating top to bottom from left to right gives us:

� Accidental threat Employee may exploit vulnerability
• Old antivirus to initiate threat scenario Malicious code on com-

puter spreads via LAN, which has likelihood 1 per year.
• Physical access to network to initiate threat scenario Malicious

code on computer spreads via LAN, which has likelihood 1 per

year.
� After threat scenario Malicious code on computer spreads via LAN,
which has likelihood 1 per year, has taken place,
• vulnerability set Old �rewall, Old version of webserver may be
exploited to initiate threat scenario Servers infected by malicious

code, which has likelihood 1 per 10 years.

• vulnerability Old �rewall may be exploited to initiate threat scenario
Malicious code tra�c jams network, which has likelihood 1 per

year.
� After threat scenario Servers infected by malicious code, which has
likelihood 1 per 10 years, has taken place, there is a likelihood 0.5 that
threat scenario Application servers malfunctioning, which has likeli-
hood 1 per 5 years, will be initiated.

� After threat scenario Malicious code tra�c jams network, which has
likelihood 1 per year, has taken place, there is a likelihood 0.1 that threat
scenario Application servers malfunctioning, which has likelihood 1

per 5 years, will be initiated.
� After threat scenario Application servers malfunctioning, which has
likelihood 1 per 5 years, has taken place, unwanted incident Corruption
of data, which has likelihood 1 per year may be initiated.

� Unwanted incident Corruption of data, which has likelihood 1 per year,
may impact asset Data privacy with consequence 2.

We may now check whether the likelihoods of the diagram have been as-
signed consistently. If for example the statistically independent threat scenarios
ts1(l1), . . . , tsn(ln) initiate threat scenario ts(l), and the likelihoods associated
with the initiate relations are li1, . . . , lin respectively, then the following inequal-
ity should be true:

l ≥ l1 · li1 + · · ·+ ln · lin .

This is an equality only when the threat diagram is complete, i.e. when all
eventualities are taken into account and all likelihoods given. If the inequality is
strict, it simply means that there are causes of ts(l) that are not accounted for.

In this example, all threat scenarios and unwanted incidents have been as-
signed likelihoods, so it is possible to check for inconsistencies with respect to
the initiate relations which have also been assigned likelihoods. The relevant
translations are:

� After threat scenario Servers infected by malicious code, which has
likelihood 1 per 10 years, has taken place, there is a likelihood 0.5 that
threat scenario Application servers malfunctioning, which has likeli-
hood 1 per 5 years, will be initiated.

� After threat scenario Malicious code tra�c jams network, which has
likelihood 1 per year, has taken place, there is a likelihood 0.1 that threat
scenario Application servers malfunctioning, which has likelihood 1

per 5 years, will be initiated.

The �rst implies that the likelihood or frequency of Application servers

malfunctioning being initiated by Servers infected by malicious code is
1 per 20 years, and the second that the frequency of Application servers

malfunctioning being initiated by Malicious code tra�c jams network

is 1 per 10 years. This tells us that the frequency of Application servers

malfunctioning should be at least 3 per 20 years if the diagram is to be

consistent, which is ok as the frequency is given as 1 per 5 years or 4 per

20 years. The fact that the two frequencies are not equal tells us that if the
assigned frequencies are correct, the diagram is incomplete (but consistent): there
are additional causes for Application servers malfunctioning which are not
accounted for.

5 Conclusion

The CORAS language has been designed to be easily understandable in order
to aid communication in a security risk analysis context. Even so, situations
are bound to arise where there is a need to explain the intended meaning of
a construct or expression. An example of such a situation is when the analysis
results are distributed to parties, within the client company, which have not been
part of the analysis process.

In order to �ll this need, this paper has presented a structured semantics for
the CORAS security risk modelling language. We have provided instructions on
how to translate the two main CORAS diagrams, via the textual syntax, into a
paragraph of English.

The paper satis�es the success criteria stated at the end of Section 1 in the
following sense:

1. The translation from CORAS diagrams to English should be modular. We
divided the translation into two independent steps: (A) Graphical to tex-
tual syntax, and (B) Textual syntax to English. Both of these component
translations are modular (the diagram and textual expressions are translated
relation by relation) so the complete translation (B ◦A) is modular.

2. The resulting paragraph should be understandable English. The wording of
the English phrases in the structured semantics is based on the descriptions
used by CORAS developers to explain the diagrams to non-specialists during
a CORAS security risk analysis. This gives us a translation into phrases of
clear understandable English.

3. The translation should be easy to perform. The translation of a diagram is
done by pattern matching, �rst by matching each relation to a translation
rule and removing unwanted optional elements, then by matching the result-
ing textual expression to a rule in the structured semantics.

4. The translation should be possible to automate. The translation rules and the
structured semantics are presented in such a way that the pattern matching
may be done automatically. However, the structuring of the translation de-
pends to a large degree on the structure of the original diagram. Thus it is
di�cult to give a general recommendation on how this is done. This means
that while it is possible to automatically structure the translation to re�ect
the branching nature of the CORAS diagrams, a more comprehensive struc-
turing may require human intervention unless the structure of the diagram
adheres to a prede�ned style.

5. It should be possible to translate inconsistent diagrams, and the translation

should enable the user to identify inconsistencies. As a CORAS diagram
is translated relation by relation and not from a more global perspective, it
does not matter to the translation whether or not the diagram is inconsistent.
However, the inconsistencies may not be conspicuous before the translation
is appropriately structured.

Related Work

Misuse cases [2, 19, 20] was an important source of inspiration in the development
of the UML pro�le mentioned in Sec. 2. A misuse case is a kind of UML use case
[12] which characterizes functionality that the system should not allow. There
are a number of security oriented extensions of UML, e.g. UMLSec [13] and
SecureUML [14]. These and related approaches have however all been designed
to capture security properties and security aspects at a more detailed level than
our language. Moreover, their focus is not on brainstorming sessions as in our
case. Fault tree is a tree-notation used in fault tree analysis (FTA) [10]. The
top node represents an unwanted incident, or failure, and the di�erent events
that may lead to the top event are modelled as branches of nodes, with the leaf
node as the causing event. Our threat diagrams often look a bit like fault trees,
but may have more than one top node. Event tree analysis (ETA) [9] focuses on
illustrating the consequences of an event and the probabilities of these. Event
trees can to a large extent also be simulated in our notation. Attack trees [18] aim
to provide a formal and methodical way of describing the security of a system
based on the attacks it may be exposed to. The notation uses a tree structure
similar to fault trees, with the attack goal as the top node and di�erent ways of
achieving the goal as leaf nodes. Our approach supports this way of modelling,
but facilitates in addition the speci�cation of the attack initiators (threats) and
the harm caused by the attack (damage to assets).

Further Work

The work presented in this paper is the starting point for several research activ-
ities. The most immediate would be empirical testing of the translation process
and the resulting sentences. The CORAS tool will be updated to re�ect the
structure of the textual syntax and facilitate automatic translation.

The development of the CORAS method and language continues in several
projects at SINTEF ICT, building on experiences from industrial case studies.
There is also ongoing work aiming for an integrated approach to security and
usability analysis.

Acknowledgements

The research for this paper has been funded by the SECURIS (152839/220) and
DIGIT (180052/S10) projects of the Research Council of Norway, and the EU-
project S3MS (IST-2006-027004). The authors thank Iselin Engan, Mass Soldal
Lund and Atle Refsdal for valuable input.

References

[1] Jan Øyvind Aagedal, Folker den Braber, Theo Dimitrakos, Bjørn Axel Gran, Dim-
itris Raptis, and Ketil Stølen. Model-based risk assessment to improve enterprise
security. In EDOC'02, pages 51�64. IEEE Computer Society, 2002.

[2] Ian F. Alexander. Misuse cases: Use cases with hostile intent. IEEE Software,
20(1):58�66, 2003.

[3] AS/NZS 4360:2004. Australian/New Zealand Standard for Risk Management,
2004.

[4] Heidi E. I. Dahl, Ida Hogganvik, and Ketil Stølen. Structured semantics for the
CORAS security risk modelling language. Technical Report A970, SINTEF ICT,
2007.

[5] Folker den Braber, Ida Hogganvik, Mass Soldal Lund, Ketil Stølen, and Fredrik
Vraalsen. Model-based security analysis in seven steps � a guided tour to the
CORAS method. BT Technology Journal, 25(1):101�117, 2007.

[6] Ida Hogganvik and Ketil Stølen. On the comprehension of security risk scenarios.
In IWPC'05, pages 115�124. IEEE Computer Society, 2005.

[7] Ida Hogganvik and Ketil Stølen. Risk Analysis Terminology for IT systems: Does
it match Intuition? In ISESE'05, pages 13�23. IEEE Computer Society, 2005.

[8] Ida Hogganvik and Ketil Stølen. A Graphical Approach to Risk Identi�cation,
Motivated by Empirical Investigations. In MoDELS'06, volume 4199 of LNCS,
pages 574�588. Springer, 2006.

[9] IEC60300. Event Tree Analysis in Dependability management � Part 3: Applica-
tion guide � Section 9: Risk analysis of technological systems. 1995.

[10] IEC61025. Fault Tree Analysis (FTA). 1990.
[11] ISO/IEC 14977:1996(E). Information technology � Syntactic metalanguage �

Extended BNF, �rst edition, 1996.
[12] Ivar Jacobson, Magnus Christenson, Patrik Jonsson, and Gunnar Övergaard.

Object-Oriented Software Engineering. A Use Case Driven Approach. Addison-
Wesley, 1992.

[13] Jan Jürjens. Secure Systems Development with UML. Springer, 2005.
[14] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: A UML-

based modeling language for model-driven security. In UML'02, volume 2460 of
LNCS, pages 426�441. Springer, 2002.

[15] Mass Soldal Lund, Ida Hogganvik, Seehusen Fredrik, and Ketil Stølen. UML
pro�le for security assessment. Technical Report STF40 A03066, SINTEF ICT,
2003.

[16] OMG. Uni�ed Modeling Language Speci�cation, version 2.0, 2004.
[17] OMG. UML Pro�le for Modeling Quality of Service and Fault Tolerance Charac-

teristics and Mechanisms, 2005.
[18] Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb's Journal of

Software Tools, 24(12):21�29, December 1999.
[19] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements with

misuse cases. In TOOLS-PACIFIC'00, pages 120�131, 2000.
[20] Guttorm Sindre and Andreas L. Opdahl. Templates for misuse case description.

In REFSQ'01, pages 125�136, 2001.

	Structured Semantics for the CORAS Security Risk Modelling Language
	Heidi E. I. Dahl, Ida Hogganvik and Ketil Stølen
	References

